Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Neuroserpin is a member of the serine protease inhibitor or serpin superfamily of proteins. It is secreted by neurones and plays an important role in the regulation of tissue plasminogen activator at the synapse. Point mutations in the neuroserpin gene cause the autosomal dominant dementia familial encephalopathy with neuroserpin inclusion bodies or FENIB. This is one of a group of disorders caused by mutations in the serpins that are collectively known as the serpinopathies. Others include α(1)-antitrypsin deficiency and deficiency of C1 inhibitor, antithrombin and α(1)-antichymotrypsin. The serpinopathies are characterised by delays in protein folding and the retention of ordered polymers of the mutant serpin within the cell of synthesis. The clinical phenotype results from either a toxic gain of function from the inclusions or a loss of function, as there is insufficient protease inhibitor to regulate important proteolytic cascades. We describe here the methods required to characterise the polymerisation of neuroserpin and draw parallels with the polymerisation of α(1)-antitrypsin. It is important to recognise that the conditions in which experiments are performed will have a major effect on the findings. For example, incubation of monomeric serpins with guanidine or urea will produce polymers that are not found in vivo. The characterisation of the pathological polymers requires heating of the folded protein or alternatively the assessment of ordered polymers from cell and animal models of disease or from the tissues of humans who carry the mutation.

Original publication

DOI

10.1016/j.ymeth.2010.11.008

Type

Journal article

Journal

Methods

Publication Date

03/2011

Volume

53

Pages

255 - 266

Keywords

Animals, Animals, Genetically Modified, Cloning, Molecular, Disease Models, Animal, Drosophila melanogaster, Epilepsies, Myoclonic, Heredodegenerative Disorders, Nervous System, Humans, Immune Sera, Inclusion Bodies, Mass Spectrometry, Mutation, Missense, Protein Multimerization, Protein Refolding, Proteostasis Deficiencies, Serpins