Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Pathogenesis of most myopathies including inherited hypertrophic (HCM) and dilated (DCM) cardiomyopathies is based on modification of structural state of contractile proteins induced by point mutations, such as mutations in alpha-tropomyosin (TM). To understand the mechanism of abnormal function of contractile system of muscle fiber due to Glu180Gly, Asp175 or Glu40Lys, Glu54Lys mutations in alpha-TM associated with HCM or DCM, we specifically labeled alpha-TM by fluorescence probe 5-IAF after Cys-190 and examined the position and mobility of the IAF-TM in the ATP hydrolysis cycle using polarized fluorescence technique. Analysis of the data suggested that the point mutations in alpha-TM associated with hypertrophic or dilated cardiomyopathy caused abnormal changes in the affinity ofTM to actin and in the position of this protein on the thin filaments in the ATPase cycle. Mutations in alpha-TM associated with HCM caused a shift of TM strands to the center of the thin filament and increased a range of tropomyosin motion and affinity of this protein to actin in the ATPase cycle. In contrast, mutations in alpha-TM associated with DCM shifted the protein to the periphery of the thin filament, reduced the amplitude of the TM movement and its affinity for actin. It is proposed that anomalous behavior of TM on the thin filaments in ATPase cycle may provoke the dysfunction of the cardiac muscle in patients with HCM and DCM.

Type

Journal article

Journal

Ross Fiziol Zh Im I M Sechenova

Publication Date

01/2013

Volume

99

Pages

73 - 80

Keywords

Actin Cytoskeleton, Actins, Adenosine Triphosphatases, Adenosine Triphosphate, Cardiomyopathy, Dilated, Cardiomyopathy, Hypertrophic, Fluoresceins, Fluorescence Polarization, Fluorescent Dyes, Humans, Mutation, Myocardium, Protein Binding, Recombinant Proteins, Tropomyosin