Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Mice are frequently used in research to examine outcomes of myocardial infarction (MI) and to investigate therapeutic interventions at an early pre-clinical stage. The MI model is generated by surgically occluding a major coronary artery, but natural variation in murine coronary anatomy can generate variable outcomes that will inevitably affect the accuracy of such investigations. The aim of this study was to use MRI to derive the most sensitive early variable that could be used to predict subsequent adverse cardiac remodelling in a male mouse model of MI. METHODS: Using a longitudinal study design, heart structure and function were evaluated using cardiac MRI at one week following surgical MI to generate the early measurements and again at four weeks, when the scar had matured. The primary variables measured at week one were left ventricular volumes at end systole (LV-ESV) and at end diastole (LV-EDV), infarct size, LV-cardiac mass, and ejection fraction (EF). RESULTS: Univariate and multiple regression analyses showed that LV-ESV at one week following MI could be used to accurately predict various parameters of adverse LV remodelling at four weeks post-MI. However, the highest correlation was between LV-ESV at one week following MI and LV-EDV at four weeks (r = 0.99; p < 0.0001), making LV-ESV at one week a valuable predictor variable of future adverse ventricular remodelling after MI. CONCLUSION: Using MRI to determine LV-ESV at an early stage following MI enables a more robust analysis of potential therapeutic interventions to ameliorate adverse cardiac remodelling.

Original publication

DOI

10.1016/j.ijcha.2016.03.005

Type

Journal article

Journal

Int J Cardiol Heart Vasc

Publication Date

06/2016

Volume

11

Pages

29 - 34

Keywords

Animal models of human disease, MRI, Myocardial infarction, Remodelling