Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

1. Tetrahydrobiopterin (BH(4)) is an essential cofactor that maintains the normal function of endothelial nitric oxide (NO) synthase. Restenosis is a key complication after transluminal angioplasty. Guanosine 5'-triphosphate-cyclohydrolase I (GTPCH) is the first rate-limiting enzyme for de novo BH(4) synthesis. However, the role of GTPCH in restenosis is not fully understood. The present study tested the hypothesis that endothelial-targeted GTPCH overexpression retards neointimal formation, a hallmark of restenosis, in mouse carotid artery. 2. Transluminal wire injury was induced in the left carotid arteries of adult male wild-type C57BL/6 (WT) and endothelial GTPCH transgenic (Tg-GCH) mice. Re-endothelialization was confirmed with in vivo Evans blue staining. Endothelium-dependent and -independent relaxations were measured using isometric tension recording. Morphological analysis was performed 2 and 4 weeks after carotid injury to assess neointimal formation. Fluorescence-based high-performance liquid chromatography (HPLC) was used to determine GTPCH activity and BH(4) levels. Basal NO release following carotid injury was assessed by N(G)-nitro-L-arginine methyl ester-induced vascular contraction. 3. The endothelium was completely removed upon transluminal wire injury and full re-endothelialization was achieved at Day 10. Endothelium-dependent relaxation was impaired 10 days and 4 weeks after carotid injury, whereas endothelium-independent relaxation remained unaffected. Morphological analysis revealed that the endothelial-specific overexpression of GTPCH reduced neointimal formation and medial hypertrophy 2 and 4 weeks after carotid injury. Both arterial GTPCH enzyme activity and BH(4) levels were significantly elevated in Tg-GCH mice compared with WT mice and basal NO release of the injured carotid artery tended to increase in Tg-GCH mice. 4. These findings suggest that the endothelial overexpression of GTPCH increased endothelial BH(4) synthesis and played a preventive role in neointimal formation induced by endothelium denudation.

Original publication

DOI

10.1111/j.1440-1681.2007.04719.x

Type

Journal article

Journal

Clin Exp Pharmacol Physiol

Publication Date

12/2007

Volume

34

Pages

1260 - 1266

Keywords

Animals, Aorta, Biopterin, Carotid Arteries, Coronary Restenosis, GTP Cyclohydrolase, Hypertrophy, Male, Mice, Mice, Inbred C57BL, Mice, Transgenic, Nitric Oxide, Tunica Intima