Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In nonexcitable cells, receptor stimulation evokes Ca(2+) release from the endoplasmic reticulum stores followed by Ca(2+) influx through store-operated Ca(2+) channels in the plasma membrane. In mast cells, store-operated entry is mediated via Ca(2+) release-activated Ca(2+) (CRAC) channels. In this study, we find that stimulation of muscarinic receptors in cultured mast cells results in Ca(2+)-dependent activation of protein kinase Calpha and the mitogen activated protein kinases ERK1/2 and this is required for the subsequent stimulation of the enzymes Ca(2+)-dependent phospholipase A(2) and 5-lipoxygenase, generating the intracellular messenger arachidonic acid and the proinflammatory intercellular messenger leukotriene C(4). In cell population studies, ERK activation, arachidonic acid release, and leukotriene C(4) secretion were all graded with stimulus intensity. However, at a single cell level, Ca(2+) influx was related to agonist concentration in an essentially all-or-none manner. This paradox of all-or-none CRAC channel activation in single cells with graded responses in cell populations was resolved by the finding that increasing agonist concentration recruited more mast cells but each cell responded by generating all-or-none Ca(2+) influx. These findings were extended to acutely isolated rat peritoneal mast cells where muscarinic or P2Y receptor stimulation evoked all-or-none activation of Ca(2+)entry but graded responses in cell populations. Our results identify a novel way for grading responses to agonists in immune cells and highlight the importance of CRAC channels as a key pharmacological target to control mast cell activation.

Original publication




Journal article


J Immunol

Publication Date





5255 - 5263


Animals, Biological Transport, Active, Calcium, Calcium Channels, Calcium Signaling, Carbachol, Cations, Divalent, Cell Line, Tumor, Cholinergic Agonists, Dose-Response Relationship, Drug, Enzyme Activation, Extracellular Signal-Regulated MAP Kinases, Female, Group IV Phospholipases A2, Leukotriene C4, MAP Kinase Signaling System, Mast Cells, Rats, Rats, Sprague-Dawley, Receptors, Muscarinic