Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca(2+)-mobilizing agent in invertebrate eggs that has recently been shown to be active in certain mammalian and plant systems. Little, however, is known concerning the properties of putative NAADP receptors. Here, for the first time, we report binding sites for NAADP in brain. In contrast to sea urchin egg homogenates, [(32)P]NAADP bound reversibly to multiple sites in brain membranes. The rank order of potency of NAADP, 2',3'-cyclic NAADP and 3'-NAADP in displacing [(32)P]NAADP was, however, the same in the two systems and in agreement with their ability to mobilize Ca(2+) from homogenates. These data indicate that [(32)P]NAADP likely binds to receptors mediating Ca(2+) mobilization. Autoradiography revealed striking heterogeneity in the distribution of [(32)P]NAADP binding sites throughout the brain. Our data strongly support a role for NAADP-induced Ca(2+) signaling in the brain.

Original publication




Journal article


J Biol Chem

Publication Date





36495 - 36497


Animals, Binding Sites, Calcium, Cells, Cultured, Male, NADP, Rats, Rats, Sprague-Dawley, Sea Urchins, Signal Transduction