Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVES: We evaluated graft patency by computed tomography and explored the determinants of intraoperative mean graft flow (MGF) and its contribution to predict early graft occlusion. METHODS: One hundred and forty-eight patients under a single surgeon were prospectively enrolled. Arterial and endoscopically harvested venous conduits were used. Intraoperative graft characteristics and flows were collected. Graft patency was blindly evaluated by a follow-up computed tomography at 11.4 weeks (median). RESULTS: Graft occlusion rate was 5.2% (n = 22 of 422; 8% venous and 3% arterial). Thirteen were performed on non-significant proximal stenosis while 9 on occluded or >70% stenosed arteries. Arterial and venous graft MGF were lower in females (Parterial = 0.010, Pvenous = 0.009), with median differences of 10 and 13.5 ml/min, respectively. Arterial and venous MGF were associated positively with target vessel diameter ≥1.75 mm (Parterial = 0.025; Pvenous = 0.002) and negatively with pulsatility index (Parterial < 0.001; Pvenous < 0.001). MGF was an independent predictor of graft occlusion, adjusting for EuroSCORE-II, pulsatility index, graft size and graft type (arterial/venous). An MGF cut-off of 26.5 ml/min for arterial (sensitivity 83.3%, specificity 80%) and 36.5 ml/min for venous grafts (sensitivity 75%, specificity 62%) performed well in predicting early graft occlusion. CONCLUSIONS: We demonstrate that MGF absolute values are influenced by coronary size, gender and graft type. Intraoperative MGF of >26.5 ml/min for arterial and >36.5 ml/min for venous grafts is the most reliable independent predictor of early graft patency. Modern-era coronary artery bypass graft is associated with low early graft failure rates when transit time flow measurement is used to provide effective intraoperative quality assurance.

Original publication

DOI

10.1093/icvts/ivab298

Type

Journal article

Journal

Interact Cardiovasc Thorac Surg

Publication Date

27/10/2021

Keywords

Computed tomography angiography, Coronary artery bypass graft, Endoscopic vein harvesting, Graft failure, Intraoperative graft flow, Transit time flow measurement