Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The cellular response of murine primary macrophages to monodisperse strontium containing bioactive glass nanoparticles (SrBGNPs), with diameters of 90 ± 10 nm and a composition (mol%) of 88.8 SiO2-1.8CaO-9.4SrO (9.4% Sr-BGNPs) was investigated for the first time. Macrophage response is critical as applications of bioactive nanoparticles will involve the nanoparticles circulating in the blood stream and macrophages will be the first cells to encounter the particles, as part of inflammatory response mechanisms. Macrophage viability and total DNA measurements were not decreased by particle concentrations of up to 250 μg/mL. The Sr-BGNPs were actively internalised by the macrophages via formation of endosome/lysosome-like vesicles bordered by a membrane inside the cells. The Sr-BGNPs degraded inside the cells, with the Ca and Sr maintained inside the silica network. When RAW264.7 cells were incubated with Sr-BGNPs, the cells were polarised towards the pro-regenerative M2 population rather than the pro-inflammatory M1 population. Sr-BGNPs are potential biocompatible vehicles for therapeutic cation delivery for applications in bone regeneration.

Original publication

DOI

10.1016/j.msec.2021.112610

Type

Journal article

Journal

Biomater Adv

Publication Date

02/2022

Volume

133

Keywords

Bioactive glass nanoparticles, Macrophages, Sol-gel, Strontium, Animals, Glass, Macrophages, Mice, Nanoparticles, Silicon Dioxide, Strontium