Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Cyclic adenosine diphosphate-ribose, an endogenous metabolite of nicotinamide adenine dinucleotide was first characterized as a potent Ca2+ mobilizing agent in sea urchin eggs. Mounting evidence points to it being an endogenous activator of Ca(2+)-induced Ca2+ release by non-skeletal muscle ryanodine receptors in several invertebrate and mammalian cell types. Cyclic adenosine diphosphate-ribose is synthesized by adenosine diphosphate-ribosyl cyclases, which have been found to be widespread enzymes. Recent data suggests that cyclic adenosine diphosphate-ribose may function as a second messenger in sea urchin eggs at fertilization and in stimulus secretion coupling in pancreatic beta-cells. A second messenger role for cyclic adenosine diphosphate-ribose requires that its intracellular levels be under the control of extracellular stimuli. Another second messenger, cGMP, stimulates the synthesis of cyclic adenosine diphosphate-ribose from nicotinamide adenine dinucleotide by activating the adenosine diphosphate-ribosyl cyclase pathway in sera urchin eggs and egg homogenates, suggesting that cyclic adenosine diphosphate-ribose may be an intracellular messenger for cell surface receptors or nitric oxide, which activate cGMP-producing guanylate cyclases. Cyclic adenosine diphosphate-ribose may have a similar role to inositol trisphosphate in controlling intracellular calcium signalling with these two calcium-mobilizing second messengers activating ryanodine receptors and inositol trisphosphate receptors respectively.

Original publication

DOI

10.1016/0303-7207(94)90130-9

Type

Journal article

Journal

Molecular and cellular endocrinology

Publication Date

01/1994

Volume

98

Pages

125 - 131

Addresses

Department of Pharmacology, Oxford University, UK.

Keywords

Animals, Calcium, N-Glycosyl Hydrolases, ADP-ribosyl Cyclase, Adenosine Diphosphate Ribose, Cyclic ADP-Ribose, Calcium Channels, Ryanodine Receptor Calcium Release Channel, Muscle Proteins, Antigens, Differentiation, Antigens, CD, Signal Transduction, Second Messenger Systems, ADP-ribosyl Cyclase 1