Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In archaeological studies, the isotopic enrichment values of carbon and nitrogen in bone collagen give a degree of information on dietary composition. The isotopic enrichments of individual amino acids from bone collagen and dietary protein have the potential to provide more precise information about the components of diet. A limited amount of work has been done on this, although the reliability of these studies is potentially limited by fractionation arising through hydrolysis of whole plant tissue (where reaction between amino acids and carbohydrates may occur) and, for certain amino acids, the use of derivatives (particularly trifluoroacetyl derivatives) for gas chromatography/isotope ratio mass spectrometry (GC/IRMS) analysis. The present study takes the approach of extracting the protein components of plant tissues before hydrolysis and using liquid chromatography/isotope ratio mass spectrometry (LC/IRMS), which does not require derivatisation, for measurement of the isotopic enrichment of the amino acids. The protocol developed offers a methodology for consistent measurement of the δ(13)C values of amino acids, allowing isotopic differences between the individual amino acids from different plant tissues to be identified. In particular, there are highly significant differences between leaf and seed protein amino acids (leaf minus grain) in the cases of threonine (-4.1‰), aspartic acid (+3.5‰) and serine (-3.2‰). In addition to its intended application in archaeology, the technique will be of value in the fields of plant sciences, nutrition and environmental food-web studies.

Original publication




Journal article


Rapid Commun Mass Spectrom

Publication Date





2981 - 2988


Amino Acids, Archaeology, Carbon Isotopes, Chromatography, Liquid, Discriminant Analysis, Mass Spectrometry, Plant Leaves, Plant Proteins, Plants, Seeds, United Kingdom