Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Fracture non-union occurs due to various factors, leading to the development of potentially substantial bone defects. While autograft and allograft are the current gold standards for non-union fractures, challenges related to availability and immune rejection highlight the need for improved treatments. A strategy in bone tissue engineering is to harness growth factors to induce an effect on cells to change their phenotype, behavior and initiate signaling pathways which lead to increased matrix deposition and tissue formation. Bone morphogenetic protein-2 (BMP-2) is a potent osteogenic growth factor however, given its rapid clearance time in vivo, there is a specific therapeutic window for efficacy while avoiding potential deleterious side-effects. It is demonstrated that a Laponite nanoclay coating on a 3D printable and bioresorbable poly(caprolactone) trimethacrylate-based resin enables binding of BMP-2, decreases the rate of release, enabling reduced concentrations to be used while enhancing osteoinduction in both in vitro and in vivo models.

Original publication

DOI

10.1002/admi.202400332

Type

Journal article

Journal

Advanced Materials Interfaces

Publication Date

01/01/2024