Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVE: The direct calculation of cerebral perfusion pressure (CPP) as the difference between mean arterial pressure and intracranial pressure (ICP) produces a number which does not always adequately describe conditions for brain perfusion. A non-invasive method of CPP measurement has previously been reported based on waveform analysis of blood flow velocity measured in the middle cerebral artery (MCA) by transcranial Doppler. This study describes the results of clinical tests of the prototype bilateral transcranial Doppler based apparatus for non-invasive CPP measurement (nCPP). METHODS: Twenty five consecutive, paralysed, sedated, and ventilated patients with head injury were studied. Intracranial pressure (ICP) and arterial blood pressure (ABP) were monitored continuously. The left and right MCAs were insonated daily (108 measurements) using a purpose built transcranial Doppler monitor (Neuro Q(TM), Deltex Ltd, Chichester, UK) with software capable of the non-invasive estimation of CPP. Time averaged values of mean and diastolic flow velocities (FVm, FVd) and ABP were calculated. nCPP was then computed as: ABPxFVd/FVm+14. RESULTS: The absolute difference between real CPP and nCPP (daily averages) was less than 10 mm Hg in 89% of measurements and less than 13 mm Hg in 92% of measurements. The 95% confidence range for predictors was no wider than +/-12 mm Hg (n=25) for the CPP, varying from 70 to 95 mm Hg. The absolute value of side to side differences in nCPP was significantly greater (p<0.05) when CT based evidence of brain swelling was present and was also positively correlated (p<0.05) with mean ICP. CONCLUSION: The device is of potential benefit for intermittent or continuous monitoring of brain perfusion pressure in situations where the direct measurement is not available or its reliability is in question.

Original publication




Journal article


J Neurol Neurosurg Psychiatry

Publication Date





198 - 204


Adolescent, Adult, Aged, Analysis of Variance, Brain Injuries, Cerebrovascular Circulation, Female, Humans, Intracranial Pressure, Male, Middle Aged, Ultrasonography, Doppler, Transcranial