Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Plasma membrane store-operated Ca²⁺ release-activated Ca²⁺ (CRAC) channels are a widespread and conserved Ca²⁺ influx pathway, driving activation of a range of spatially and temporally distinct cellular responses. Although CRAC channels are activated by the loss of Ca²⁺ from the endoplasmic reticulum, their gating is regulated by mitochondria. Through their ability to buffer cytoplasmic Ca²⁺, mitochondria take up Ca²⁺ released from the endoplasmic reticulum by InsP₃ receptors, leading to more extensive store depletion and stronger activation of CRAC channels. Mitochondria also buffer Ca²⁺ that enters through CRAC channels, reducing Ca²⁺-dependent slow inactivation of the channels. In addition, depolarised mitochondria impair movement of the CRAC channel activating protein STIM1 across the endoplasmic reticulum membrane. Because they regulate CRAC channel activity, particularly Ca²⁺-dependent slow inactivation, mitochondria influence CRAC channel-driven enzyme activation, secretion and gene expression. Mitochondrial regulation of CRAC channels therefore provides an important control element to the regulation of intracellular Ca²⁺ signalling.

Original publication

DOI

10.1007/s00424-012-1095-x

Type

Journal article

Journal

Pflugers Arch

Publication Date

07/2012

Volume

464

Pages

27 - 32

Keywords

Animals, Calcium, Calcium Channels, Calcium Signaling, Endoplasmic Reticulum, GTP Phosphohydrolases, Humans, Inositol 1,4,5-Trisphosphate Receptors, Ion Channel Gating, Mast Cells, Mitochondria