Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Genome-wide association studies (GWAS) search for associations between genetic variants and disease status, typically via logistic regression. Often there are covariates, such as sex or well-established major genetic factors, that are known to affect disease susceptibility and are independent of tested genotypes at the population level. We show theoretically and with data from recent GWAS on multiple sclerosis, psoriasis and ankylosing spondylitis that inclusion of known covariates can substantially reduce power for the identification of associated variants when the disease prevalence is lower than a few percent. Whether the inclusion of such covariates reduces or increases power to detect genetic effects depends on various factors, including the prevalence of the disease studied. When the disease is common (prevalence of >20%), the inclusion of covariates typically increases power, whereas, for rarer diseases, it can often decrease power to detect new genetic associations.

Original publication

DOI

10.1038/ng.2346

Type

Journal article

Journal

Nat Genet

Publication Date

22/07/2012

Volume

44

Pages

848 - 851

Keywords

Case-Control Studies, Genome-Wide Association Study, Humans, Logistic Models, Models, Statistical, Multiple Sclerosis, Multivariate Analysis, Psoriasis, Sample Size, Spondylitis, Ankylosing