Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The antipodes of lithium N-benzyl-N-(α-methylbenzyl)amide are highly efficient enantiopure ammonia equivalents for the asymmetric synthesis of β-amino acid derivatives via conjugate addition to α,β- unsaturated esters. 6Li and 15N NMR spectroscopic studies of doubly labelled 6lithium (S)-15N-benzyl- 15N-(α-methylbenzyl)amide in THF at low temperature reveal the presence of lithium amide dimers as the only observable species. Either a monomeric or dimeric lithium amide reactive species can be accommodated within the transition state mnemonic for this class of conjugate addition reaction. This enantiopure lithium amide offers unique opportunities over achiral (e.g., lithium dibenzylamide) and C2-symmetric (e.g., lithium bis-N,N-α-methylbenzylamide) counterparts for further mechanistic study owing to the ready distinction of the various dimers formed. © 2013 Elsevier Ltd. All rights reserved.

Original publication

DOI

10.1016/j.tetasy.2013.07.001

Type

Journal article

Journal

Tetrahedron Asymmetry

Publication Date

31/08/2013

Volume

24

Pages

947 - 952