Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In the complex microcosm of a cell, information security and its faithful transmission are critical for maintaining internal stability. To achieve a coordinated response of all its parts to any stimulus the cell must protect the information received from potentially confounding signals. Physical segregation of the information transmission chain ensures that only the entities able to perform the encoded task have access to the relevant information. The cAMP intracellular signaling pathway is an important system for signal transmission responsible for the ancestral 'flight or fight' response and involved in the control of critical functions including frequency and strength of heart contraction, energy metabolism and gene transcription. It is becoming increasingly apparent that the cAMP signaling pathway uses compartmentalization as a strategy for coordinating the large number of key cellular functions under its control. Spatial confinement allows the formation of cAMP signaling "hot spots" at discrete subcellular domains in response to specific stimuli, bringing the information in proximity to the relevant effectors and their recipients, thus achieving specificity of action. In this report we discuss how the different constituents of the cAMP pathway are targeted and participate in the formation of cAMP compartmentalized signaling events. We illustrate a few examples of localized cAMP signaling, with a particular focus on the nucleus, the sarcoplasmic reticulum and the mitochondria. Finally, we discuss the therapeutic potential of interventions designed to perturb specific cAMP cascades locally.

Original publication

DOI

10.1016/j.pharmthera.2014.03.008

Type

Journal article

Journal

Pharmacol Ther

Publication Date

09/2014

Volume

143

Pages

295 - 304

Keywords

AKAPs, Compartmentalization, PDEs, PKA, Signaling, cAMP, Animals, Cellular Structures, Cyclic AMP, Cyclic AMP-Dependent Protein Kinases, Drug Discovery, Humans, Signal Transduction