Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2014 The Author(s) To identify genetic variants associated with refractive astigmatism in the general population, meta-analyses of genome-wide association studies were performed for: White Europeans aged at least 25 years (20 cohorts, N = 31,968); Asian subjects aged at least 25 years (7 cohorts, N = 9,295); White Europeans aged <25 years (4 cohorts, N = 5,640); and all independent individuals from the above three samples combined with a sample of Chinese subjects aged <25 years (N = 45,931). Participants were classified as cases with refractive astigmatism if the average cylinder power in their two eyes was at least 1.00 diopter and as controls otherwise. Genome-wide association analysis was carried out for each cohort separately using logistic regression. Meta-analysis was conducted using a fixed effects model. In the older European group the most strongly associated marker was downstream of the neurexin-1 (NRXN1) gene (rs1401327, P = 3.92E−8). No other region reached genome-wide significance, and association signals were lower for the younger European group and Asian group. In the meta-analysis of all cohorts, no marker reached genome-wide significance: The most strongly associated regions were, NRXN1 (rs1401327, P = 2.93E−07), TOX (rs7823467, P = 3.47E−07) and LINC00340 (rs12212674, P = 1.49E−06). For 34 markers identified in prior GWAS for spherical equivalent refractive error, the beta coefficients for genotype versus spherical equivalent, and genotype versus refractive astigmatism, were highly correlated (r = −0.59, P = 2.10E−04). This work revealed no consistent or strong genetic signals for refractive astigmatism; however, the TOX gene region previously identified in GWAS for spherical equivalent refractive error was the second most strongly associated region. Analysis of additional markers provided evidence supporting widespread genetic co-susceptibility for spherical and astigmatic refractive errors.

Original publication

DOI

10.1007/s00439-014-1500-y

Type

Journal article

Journal

Human Genetics

Publication Date

04/11/2014