Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Transthyretin (TTR) is a plasma hormone carrier protein associated with hereditary and senile forms of systemic amyloid disease, wherein slow tetramer disassembly is thought to be an obligatory step. Plasma transport of retinol is carried out exclusively by the retinol-binding protein (RBP), through complexation with transthyretin. Using mass spectrometry to examine the subunit exchange dynamics, we find that retinol stabilizes the quaternary structure of transthyretin, through its interactions with RBP, reducing the rate of transthyretin disassembly ∼17-fold compared to apoTTR. In the absence of retinol but in the presence of RBP, transthyretin is only marginally stabilized with the rate of disassembly reduced ∼two-fold with respect to apoTTR. Surprisingly, we found two retinoids that stabilize transthyretin directly, in the absence of RBP, whereas retinol itself requires RBP in order to stabilize transthyretin. Our results demonstrate new roles for RBP and retinoids as stabilizers of transthyretin.

Original publication




Journal article


ACS Chem Biol

Publication Date





1137 - 1146


Crystallography, X-Ray, Models, Molecular, Prealbumin, Protein Binding, Protein Multimerization, Protein Structure, Quaternary, Protein Subunits, Retinol-Binding Proteins, Vitamin A