A polymorphism in the IGF-I gene influences the age-related decline in circulating total IGF-I levels.
Rietveld I., Janssen JAMJL., Hofman A., Pols HAP., van Duijn CM., Lamberts SWJ.
OBJECTIVE: Recent studies have demonstrated an association between a 192 bp polymorphism of the IGF-I gene and total IGF-I serum levels, birth weight, body height and the risk of developing diabetes and cardiovascular diseases later on in life. This IGF-I gene polymorphism in the promoter region of the IGF-I gene may directly influence the expression of IGF-I. In the present study we evaluated the role of this polymorphism in the age-related decline in serum IGF-I levels. SUBJECTS AND METHODS: All subjects were participants of the Rotterdam Study, a population-based cohort study of diseases in the elderly. We studied a total group of 346 subjects, who comprised two subgroups: a randomly selected population-based sample of 196 subjects, and a group of 150 subjects selected on IGF-I genotype. In the total group of 346 individuals the relationship between this 192 bp polymorphism and the age-related decline in circulating total IGF-I levels was studied. RESULTS: Homozygous carriers of the 192 bp allele demonstrated significant decline in serum IGF-I with age (r=-0.29, P=0.002). This decline is similar to that seen in the general population. An age-related decline in serum total IGF-I was not observed in heterozygotes (r=-0.06, P=0.48) and non-carriers (r = -0.12, P=0.32). Interestingly, the relationship between age and serum IGF-binding protein-3 levels showed the same pattern. CONCLUSION: We observed only in homozygous carriers of the 192 bp alleles of the IGF-I gene an age-related decline in circulating total IGF-I levels, but not in heterozygotes and non-carriers of the 192 bp allele. We hypothesize that this IGF-I gene polymorphism directly or indirectly influences GH-mediated regulation of IGF-I secretion.