Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The high metabolic rate required for tumor growth often leads to hypoxia in poorly-perfused regions. Hypoxia activates a complex gene expression program, mediated by hypoxia inducible factor 1 (HIF1alpha). One of the consequences of HIF1alpha activation is up-regulation of glycolysis and hence the production of lactic acid. In addition to the lactic acid-output, intracellular titration of acid with bicarbonate and the engagement of the pentose phosphate shunt release CO(2) from cells. Expression of the enzyme carbonic anhydrase 9 on the tumor cell surface catalyses the extracellular trapping of acid by hydrating cell-generated CO(2) into [see text] and H(+). These mechanisms contribute towards an acidic extracellular milieu favoring tumor growth, invasion and development. The lactic acid released by tumor cells is further metabolized by the tumor stroma. Low extracellular pH may adversely affect the intracellular milieu, possibly triggering apoptosis. Therefore, primary and secondary active transporters operate in the tumor cell membrane to protect the cytosol from acidosis. We review mechanisms regulating tumor intracellular and extracellular pH, with a focus on carbonic anhydrase 9. We also review recent evidence that may suggest a role for CA9 in coordinating pH(i) among cells of large, unvascularized cell-clusters.

Original publication

DOI

10.1007/s10555-007-9064-0

Type

Journal article

Journal

Cancer Metastasis Rev

Publication Date

06/2007

Volume

26

Pages

299 - 310

Keywords

Antigens, Neoplasm, Bicarbonates, Carbon Dioxide, Carbonic Anhydrase IX, Carbonic Anhydrases, Humans, Hydrogen-Ion Concentration, Hypoxia-Inducible Factor 1, alpha Subunit, Models, Biological, Neoplasms, Reference Values