Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

This article charts the history of deep brain stimulation (DBS) as applied to alleviate a number of neurological disorders, while in parallel mapping the electrophysiological circuits involved in generating and integrating neural signals driving the cardiorespiratory system during exercise. With the advent of improved neuroimaging techniques, neurosurgeons can place small electrodes into deep brain structures with a high degree accuracy to treat a number of neurological disorders, such as movement impairment associated with Parkinson's disease and neuropathic pain. As well as stimulating discrete nuclei and monitoring autonomic outflow, local field potentials can also assess how the neurocircuitry responds to exercise. This technique has provided an opportunity to validate in humans putative circuits previously identified in animal models. The central autonomic network consists of multiple sites from the spinal cord to the cortex involved in autonomic control. Important areas exist at multiple evolutionary levels, which include the anterior cingulate cortex (telencephalon), hypothalamus (diencephalon), periaqueductal grey (midbrain), parabrachial nucleus and nucleus of the tractus solitaries (brainstem), and the intermediolateral column of the spinal cord. These areas receive afferent input from all over the body and provide a site for integration, resulting in a coordinated efferent autonomic (sympathetic and parasympathetic) response. In particular, emerging evidence from DBS studies have identified the basal ganglia as a major sub-cortical cognitive integrator of both higher center and peripheral afferent feedback. These circuits in the basal ganglia appear to be central in coupling movement to the cardiorespiratory motor program. © 2020 American Physiological Society. Compr Physiol 10:1085-1104, 2020.

Original publication

DOI

10.1002/cphy.c190039

Type

Journal article

Journal

Compr Physiol

Publication Date

08/07/2020

Volume

10

Pages

1085 - 1104