Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The diabetic heart becomes metabolically remodelled as a consequence of exposure to abnormal circulating substrates and hormones. Fatty acid uptake and metabolism are increased in the type 2 diabetic heart, resulting in accumulation of intracellular lipid intermediates and an increased contribution of fatty acids towards energy generation. Cardiac glucose uptake and oxidation are decreased, predominantly due to increased fatty acid metabolism, which suppresses glucose utilisation via the Randle cycle. These metabolic changes decrease cardiac efficiency and energetics in both humans and animal models of diabetes. Diabetic hearts have decreased recovery following ischemia, indicating a reduced tolerance to oxygen-limited conditions. There is evidence that diabetic hearts have a compromised hypoxia signalling pathway, as hypoxia-inducible factor (HIF) and downstream signalling from HIF are reduced following ischemia. Failure to activate HIF under oxygen-limited conditions results in less angiogenesis, and an inability to upregulate glycolytic ATP generation. Given that glycolysis is already suppressed in the diabetic heart under normoxic conditions, the inability to upregulate glycolysis in response to hypoxia may have deleterious effects on ATP production. Thus, impaired HIF signalling may contribute to metabolic and energetic abnormalities, and impaired collateral vessel development following myocardial infarction in the type 2 diabetic heart.

Original publication

DOI

10.1016/j.yjmcc.2011.01.007

Type

Journal article

Journal

J Mol Cell Cardiol

Publication Date

04/2011

Volume

50

Pages

598 - 605

Keywords

Animals, Diabetes Mellitus, Glucose, Heart, Humans, Hypoxia, Lipid Metabolism, Mitochondria, Myocardium