Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AIMS: We evaluated whether incorporating information on ethnic background and polygenic risk enhanced the Leicester Risk Assessment (LRA) score for predicting 10-year risk of type 2 diabetes. METHODS: The sample included 202,529 UK Biobank participants aged 40-69 years. We computed the LRA score, and developed two new risk scores using training data (80% sample): LRArev, which incorporated additional information on ethnic background, and LRAprs, which incorporated polygenic risk for type 2 diabetes. We assessed discriminative and reclassification performance in a test set (20% sample). Type 2 diabetes was ascertained using primary care, hospital inpatient and death registry records. RESULTS: Over 10 years, 7,476 participants developed type 2 diabetes. The Harrell's C indexes were 0.796 (95% Confidence Interval [CI] 0.785, 0.806), 0.802 (95% CI 0.792, 0.813), and 0.829 (95% CI 0.820, 0.839) for the LRA, LRArev and LRAprs scores, respectively. The LRAprs score significantly improved the overall reclassification compared to the LRA (net reclassification index [NRI] = 0.033, 95% CI 0.015, 0.049) and LRArev (NRI = 0.040, 95% CI 0.024, 0.055) scores. CONCLUSIONS: Polygenic risk moderately improved the performance of the existing LRA score for 10-year risk prediction of type 2 diabetes.

Original publication

DOI

10.1016/j.dsx.2024.102996

Type

Journal article

Journal

Diabetes Metab Syndr

Publication Date

29/03/2024

Volume

18

Keywords

Leicester Risk Assessment, Polygenic risk score, Risk prediction, Type 2 diabetes, UK Biobank