Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Hypertrophic cardiomyopathy (HCM), characterized by cardiac hypertrophy and contractile dysfunction, is a major cause of heart failure. HCM can result from mutations in the gene encoding cardiac α-tropomyosin (TM). To understand how the HCM-causing Asp175Asn and Glu180Gly mutations in α-tropomyosin affect on actin-myosin interaction during the ATPase cycle, we labeled the SH1 helix of myosin subfragment-1 and the actin subdomain-1 with the fluorescent probe N-iodoacetyl-N'-(5-sulfo-1-naphtylo)ethylenediamine. These proteins were incorporated into ghost muscle fibers and their conformational states were monitored during the ATPase cycle by measuring polarized fluorescence. For the first time, the effect of these α-tropomyosins on the mobility and rotation of subdomain-1 of actin and the SH1 helix of myosin subfragment-1 during the ATP hydrolysis cycle have been demonstrated directly by polarized fluorimetry. Wild-type α-tropomyosin increases the amplitude of the SH1 helix and subdomain-1 movements during the ATPase cycle, indicating the enhancement of the efficiency of the work of cross-bridges. Both mutant TMs increase the proportion of the strong-binding sub-states, with the effect of the Glu180Gly mutation being greater than that of Asp175Asn. It is suggested that the alteration in the concerted conformational changes of actomyosin is likely to provide the structural basis for the altered cardiac muscle contraction.

Original publication

DOI

10.1016/j.bbapap.2011.11.004

Type

Journal article

Journal

Biochim Biophys Acta

Publication Date

02/2012

Volume

1824

Pages

366 - 373

Keywords

Actins, Actomyosin, Adenosine Triphosphatases, Amino Acid Substitution, Animals, Asparagine, Aspartic Acid, Cardiomyopathy, Hypertrophic, Fluorescent Dyes, Glutamic Acid, Glycine, Humans, Muscle Contraction, Mutation, Myosin Subfragments, Naphthalenesulfonates, Peptide Fragments, Protein Structure, Secondary, Rabbits, Spectrometry, Fluorescence, Tropomyosin