Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Cardiovascular disease remains the major cause of mortality, and cardiac cell therapy has recently emerged as a paradigm for heart repair. The epicardium is a layer of mesothelial cells covering the heart that during development contributes to different cardiovascular lineages, including cardiomyocytes, but which becomes quiescent after birth. We previously revealed that the peptide thymosin beta 4 (Tβ4) can reactivate adult epicardium-derived cells (EPDCs) after myocardial infarction (MI), to proliferate, and differentiate into cardiovascular derivatives. The aim of this study was to provide a lineage characterization of the adult EPDCs relative to the embryonic epicardial lineage and to determine prospective cell fate biases within the activated adult population during cardiovascular repair. Wt1(GFPCre/+) mice were primed with Tβ4 and MI induced by ligation of the left anterior descending coronary artery. Adult WT1(+) GFP(+) EPDCs were fluorescence-activated cell sorted (FACS) at 2, 4, and 7 days after MI. Embryonic WT1(+) GFP(+) EPDCs were isolated from embryonic hearts (E12.5) by FACS, and sorted cells were characterized by real-time quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) and immunostaining. Adult WT1(+) GFP(+) EPDCs were highly heterogeneous, expressing cardiac progenitor and mesenchymal stem markers. Based on the expression of stem cell antigen-1 (Sca-1), CD44, and CD90, we identified different subpopulations of EPDCs of varying cardiovascular potential, according to marker gene profiles, with a molecular phenotype distinct from the source embryonic epicardial cells at E12.5. Thus, adult WT1(+) GFP(+) cells are a heterogeneous population that when activated can restore an embryonic gene programme, but do not revert entirely to adopt an embryonic phenotype. Potential biases in cardiovascular cell fate suggest that discrete subpopulations of EPDCs might be clinically relevant for regenerative therapy.

Original publication

DOI

10.1089/scd.2014.0019

Type

Journal article

Journal

Stem Cells Dev

Publication Date

01/08/2014

Volume

23

Pages

1719 - 1730

Keywords

Adult Stem Cells, Animals, Antigens, Ly, Cell Separation, Embryonic Stem Cells, Female, Gene Expression Profiling, Green Fluorescent Proteins, Hyaluronan Receptors, Immunophenotyping, Membrane Proteins, Mice, Inbred C57BL, Pericardium, Phenotype, Thy-1 Antigens, Thymosin