Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Analogues of stepping-stone models are considered where the site-space is continuous, the migration process is a general Markov process, and the type-space is infinite. Such processes were defined in previous work of the second author by specifying a Feller transition semigroup in terms of expectations of suitable functionals for systems of coalescing Markov processes. An alternative representation is obtained here in terms of a limit of interacting particle systems. It is shown that, under a mild condition on the migration process, the continuum-sites stepping-stone process has continuous sample paths. The case when the migration process is Brownian motion on the circle is examined in detail using a duality relation between coalescing and annihilating Brownian motion. This duality relation is also used to show that a tree-like random compact metric space that is naturally associated to an infinite family of coalescing Brownian motions on the circle has Hausdorff and packing dimension both almost surely equal to 1/2 and, moreover, this space is capacity equivalent to the middle-1/2 Cantor set (and hence also to the Brownian zero set).

Type

Journal article

Journal

Annals of Probability

Publication Date

01/07/2000

Volume

28

Pages

1063 - 1110