Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Dihydrodipicolinate synthase (DHDPS) is a tetrameric enzyme that is the first enzyme unique to the ( S)-lysine biosynthetic pathway in plants and bacteria. Previous studies have looked at the important role of Tyr107, an amino acid residue located at the tight-dimer interface between two monomers, in participating in a catalytic triad of residues during catalysis. In this study, we examine the importance of this residue in determining the quaternary structure of the DHDPS enzyme. The Tyr107 residue was mutated to tryptophan, and structural, biophysical, and kinetic studies were carried out on the mutant enzyme. These revealed that while the solid-state structure of the mutant enzyme was largely unchanged, as judged by X-ray crystallography, it exists as a mixture of primarily monomer and tetramer in solution, as determined by analytical ultracentrifugation, size-exclusion chromatography, and mass spectrometry. The catalytic ability of the DHDPS enzyme was reduced by the mutation, which also allowed the adventitious binding of alpha-ketoglutarate to the active site. A reduction in the apparent melting temperature of the mutant enzyme was observed. Thus, the tetrameric quaternary structure of DHDPS is critical to controlling specificity, heat stability, and intrinsic activity.

Original publication

DOI

10.1021/bi801094t

Type

Journal article

Journal

Biochemistry

Publication Date

18/11/2008

Volume

47

Pages

12108 - 12117

Keywords

Amino Acid Substitution, Catalysis, Catalytic Domain, Crystallography, X-Ray, Enzyme Stability, Escherichia coli, Escherichia coli Proteins, Hydro-Lyases, Kinetics, Mutation, Missense, Protein Structure, Quaternary, Protein Structure, Tertiary, Substrate Specificity