Research groups
Matthew Robson
Visiting Scientist
Improving disease diagnosis using Cardiac MRI and MRS at high field strength.
Cardiac Magnetic Resonance Imaging is a technology that has emerged as an incredibly powerful tool for visualising the human heart. In the last 15 years the method has gone from an approach that was academically interesting to one that is used clinically on hundreds of patients every day. In oxford we enjoy being part of this revolution. Specifically Oxford is pioneering the use of high magnetic field MRI to push forward the boundaries of what is possible with MR of the entire cardiovascular system.
The cardiac physics team, which I presently lead, works in a number of areas. These include the use of MRS (magnetic resonance spectroscopy) for directly measuring the concentration of metabolites in the heart (using both the proton and the phosphorus signatures), which benefits greatly to our access to our 3 Tesla and 7 Tesla human scanners. We are also investigating how we can use our 7 Tesla human scanner (one of only 2 in the UK, and 30 worldwide) to better diagnose cardiac disease. Cardiac spectroscopy is an area that was first pioneered in Oxford over 20 years ago and with these latest technical innovations we hope that we will at last make is clinically useful.
Another area of expertise lies in the characterising tissue using its MR properties. Specifically we are interested in the relaxation times of the tissues which we have found demonstrate remarkable correlations with disease. (figure ShMOLLI provides an accurate T1 map in a single breath-hold). The new methods that we have developed make it very easy to perform precise diagnoses that makes cardiac MRI much easier to perform. We believe that these mapping methods are set to revolutionise cardiac MRI and now we have validated the applicability of these methods in the clinic (with our clinical partners in Oxford and beyond) we are working closely with Siemens Healthcare to make these methods available to routine clinical MRI sites.
A further area with which I have worked is in Ultra-Short Echo Time (UTE) imaging, in which we reduce the imaging time down from milliseconds to microseconds. This enables us to image hydrogen nuclei that previously were invisible to MRI. Usefully the protons associated with collagen fall into this category and consequently these approaches have found great utility when imaging the musculo skeletal systems of the body. Although this isn’t a direct area of research for me, I am fortunate enough to be able to collaborate with groups using my methods, which is very exciting.
Recent publications
-
Magnitude-intrinsic water-fat ambiguity can be resolved with multipeak fat modeling and a multipoint search method.
Journal article
Triay Bagur A. et al, (2019), Magn Reson Med, 82, 460 - 475
-
Addressing the dichotomy between individual and societal approaches to personalised medicine in oncology.
Journal article
Salgado R. et al, (2019), Eur J Cancer, 114, 128 - 136
-
Identification of Myocardial Disarray in Patients With Hypertrophic Cardiomyopathy and Ventricular Arrhythmias
Journal article
ARIGA R. et al, (2019), Journal of the American College of Cardiology
-
Spleen extracellular volume fraction and platelet count/spleen volume ratio are accurate non-invasive markers of portal hypertension
Conference paper
Levick C. et al, (2019), JOURNAL OF HEPATOLOGY, 70, E820 - E821
-
Spleen T1 and spleen diameter criteria can identify and exclude oesophageal varices accurately
Conference paper
Levick C. et al, (2019), JOURNAL OF HEPATOLOGY, 70, E15 - E15