Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

A new discovery on how iron deficiency affects the vasculature of the lung could hold the key to improving treatment of pulmonary arterial hypertension.

A new paper from the Lakhal-Littleton Group at Oxford’s Department of Physiology Anatomy & Genetics describes the way in which iron deficiency affects human vasculature - in particular the vasculature of the lung.

Iron deficiency is the most common nutritional disorder in the word. Its prevalence is particularly high in patients with cardiovascular diseases, in whom it is associated with poor outcome.

It has been known for some time that iron deficiency predisposes to pulmonary arterial hypertension (PAH). In this condition, the vasculature in the lungs is constricted and remodelled, and this puts pressure on the right side of the heart. For some time it was thought that PAH is caused by anaemia, a condition in which iron deficiency is the underlying mechanism. Consequently, the only consideration given to iron deficiency in the clinical setting has been in the context of correcting anaemia.

Read more (University of Oxford website)

Read more and watch an interview with Associate Professor Lakhal-Littleton (Department of Physiology, Anatomy & Genetics website)

Similar stories

Travels with Vignesh

CRM General

Vignesh Murugesan, a Postdoctoral Researcher in Department of Physiology, Anatomy & Genetics (DPAG), describes how he found his way from the large metropolitan town of Chennai in India to studying regenerative medicine here in Oxford, via an 8 year stint in Sweden.

Genetic breakthrough to target care for deadly heart condition

CRE Research

Professor Watkins and his team have found a new type of genetic change in the DNA of people with hypertrophic cardiomyopathy (HCM) - a silent killer amongst families that can cause sudden death in young people due to the thickening of the heart muscle.

Earliest origins of the forming heart identified

CRE Research

The earliest known progenitor of the outermost layer of the heart has been characterised for the first time and linked to the development of other critical cell types in the developing heart in a new paper from the Srinivas group led by BHF Immediate Fellow Dr Richard Tyser.

Professor Sir Rory Collins awarded the MRC Millennium Medal 2020

CRE Research

Professor Sir Rory Collins, Head of the Nuffield Department of Population Health, and Principal Investigator and Chief Executive of UK Biobank, has been awarded the Medical Research Council (MRC) Millennium Medal 2020, the MRC’s most prestigious personal award.

New MRI technique could detect early signs of heart failure in cancer patients following chemotherapy

CRE Publication Research

New research led by Oxford BHF CRE Intermediate Transition Fellow Dr Kerstin Timm shows that a recently developed imaging technique pioneered by the Tyler Group can detect early metabolic changes in the heart caused by a commonly used chemotherapy drug, which is known to increase risk of heart failure in cancer survivors.