Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Researchers in the Medical Sciences Division have established a key cause of micro blood vessels constricting during surgery to reopen a blocked artery, and identified a potential therapeutic target to block the mechanism behind it.

Cardiovascular disease is the main cause of death in the UK and throughout the Western World. One of the most common ways in which that manifests is through heart attacks, which occurs when one of the heart's arteries is blocked. During a heart attack part of the heart starts to die, which causes pain in the chest and can be life threatening.

Large heart attacks are treated with an emergency procedure to reopen the blocked artery using a balloon and metal tube called a stent. Whilst this procedure is often life saving, in around one third of cases smaller “micro” blood vessels beyond the stent remain constricted causing significant damage. The cause of these micro-vessels being very tightly constricted has so far been unclear.

A new study led by Professor Neil Herring (Department of Physiology, Anatomy and Genetics), Professor Keith Channon (Radcliffe Department of Medicine) and Professor Kim Dora (Department of Pharmacology) has shed light on why this may happen.

Read more (Department of Physiology, Anatomy & Genetics website)

Similar stories

Joaquim Vieira recognised in national image competition

DPAG BHF Intermediate Research Fellow Dr Joaquim Vieira has been shortlisted for the British Heart Foundation’s annual ‘Reflections of Research’ image competition.

Study develops radiotranscriptomic AI analysis to enable virtual heart biopsies

RDM researchers tested the method in COVID-19 patients, to find that the results predicted in-hospital mortality.

BHF Senior Fellowship renewal for Duncan Sparrow could pave the way to revealing unknown causes of heart defects in babies

Congratulations are in order for Associate Professor Duncan Sparrow, who has been awarded a renewal of his British Heart Foundation Senior Basic Science Research Fellowship. The award will fund crucial investigations into little understood environmental risk factors of congenital heart disease, and could one day lead to new therapeutic strategies.

The effect of nuclear pH on cardiac gene expression

Research led by Dr Alzbeta Hulikova and Professor Pawel Swietach has, for the first time, described the potential regulation of nuclear acid-base chemistry in neonatal and adult cardiomyocytes, and explained its relevance in the context of heart physiology and pathology.

Study indicates reasons for decline in death rates from heart attacks

A new study involving Oxford Population Health researchers finds that both prevention and improved treatments have helped reduce deaths from heart attacks - but the relative importance of each varies by country, age and sex.