Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

A new paper from the Heather and Tyler groups has uncovered the mechanism responsible for reduced energy in the hearts of patients with type 2 diabetes and revealed a new therapeutic strategy to reverse the energy deficit.

Graphical abstract showing increased energy levels in the heart when mitochondrial deacetylase SIRT3 activator "honokiol" is administered to the diabetic heart, compared to lower levels in the research control group.

Patients with type 2 diabetes have less energy within their hearts, resulting in less energy to power the pumping of the heart. However, the mechanisms responsible for this energy deficit, and whether therapies could be used to reverse this, have so far been unknown. 

The diabetic heart is a battery half empty - Prof Lisa Heather

New research led by Associate Professor Lisa Heather shows that early on in the development of diabetes, the cardiac mitochondria, known as the cellular power stations, work more slowly. This is due to a post-translational modification of a large number of mitochondrial enzymes. Mitochondrial proteins become hyperacetylated, which decreases the ability of the heart to use fuel for energy production. 

The team then demonstrate that a mitochondrial deacetylase SIRT3 activator, called honokiol, when administered in diabetes is able to reverse the hyperacetylation, speed up mitochondrial function and increase the amount of energy within the heart.

Prof Lisa Heather said: "By identifying the mechanisms and a way to reverse it, honokiol provides a therapeutic route to 'recharge the heart's battery' in diabetes."

"Ultimately, strategies to improve cardiac metabolism and energy generation in type 2 diabetes may provide much needed routes to decrease mortality from cardiovascular disease, the leading cause of death, in diabetes."

 

The full paper "Rescue of myocardial energetic dysfunction in diabetes through the correction of mitochondrial hyperacetylation by honokiol" is available to read in JCI Insight.

DPAG team members who have contributed to this paper include Matthew Kerr, Dr Jack Miller, Dr Kerstin Timm, Claudia Montes Aparicio and Professor Damian Tyler.

Similar stories

Richard Tyser and Jack Miller honoured by the British Society of Cardiovascular Research

Dr Richard Tyser is this year’s winner of the Bernard and Joan Marshall Early Career Investigator Prize, and Dr Jack Miller has received a runner-up award, at the British Society of Cardiovascular Research Autumn Meeting.

Xin Sun shortlisted in national science image competition

DPAG Postdoctoral Research Scientist Dr Xin Sun has been shortlisted in the British Heart Foundation’s (BHF) annual ‘Reflections of Research’ image competition.

Reducing fat in the diabetic heart could improve recovery from heart attack

New research from the Heather Group has shown that in type 2 diabetes an overload of lipids reduces the heart’s ability to generate energy during a heart attack, decreasing chances of recovery.

Critical six-week window to ‘reset’ blood pressure after giving birth

Home blood pressure monitors could help mothers significantly lower high blood pressure after pregnancy