Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Dr Damien Barnette, a Postdoctoral Research Scientist, has recently published new data in the journal JCI Insight, iRhom2-mediated proinflammatory signalling regulates heart repair following myocardial infarction.

When the heart undergoes injury, such as following a heart attackan immediate response is the infiltration of immune cells of which one important sub-type are macrophages. These are thought to come in two distinct “flavours”- early “proinflammmatory” (or M1), which mop up dead and dying cells, followed by “reparative” (M2) macrophages, which help remodel the heart and contribute to patching the area of injury with a scar.

By looking at the injured hearts in mice that lack secretion of a key inflammatory molecule called TNF-alpha from their macrophages, Dr Barnette and colleagues revealed an unexpected link between the two immune cell phases in response to injury.

The dampening of pro-inflammatory signalling had a direct, knock-on effect on scar formation, whereby the mutant mice had less stable scars, poor heart function and reduced survival.

This suggests that there is a gradient of immune cell responses which is not restricted to the two “flavours”, and that downstream repair of a heart attack by scar formation is inextricably linked to the early pro-inflammatory immune cell response. This has important implications for designing strategies to modulate inflammation and repair as a combined therapy with restoring lost cardiovascular tissue after heart attack.

This work was done in collaboration with Professor Paul RileyDr Thomas CahillMs Mala Gunadasa-RohlingProfessor Carolyn CarrProfessor Matthew Freeman (Dunn School) and was supported by the British Heart Foundation

To find out more about the research that goes similar to this, visit the Riley Research Group webpage.

Similar stories

Travels with Vignesh

CRM General

Vignesh Murugesan, a Postdoctoral Researcher in Department of Physiology, Anatomy & Genetics (DPAG), describes how he found his way from the large metropolitan town of Chennai in India to studying regenerative medicine here in Oxford, via an 8 year stint in Sweden.

Genetic breakthrough to target care for deadly heart condition

CRE Research

Professor Watkins and his team have found a new type of genetic change in the DNA of people with hypertrophic cardiomyopathy (HCM) - a silent killer amongst families that can cause sudden death in young people due to the thickening of the heart muscle.

Earliest origins of the forming heart identified

CRE Research

The earliest known progenitor of the outermost layer of the heart has been characterised for the first time and linked to the development of other critical cell types in the developing heart in a new paper from the Srinivas group led by BHF Immediate Fellow Dr Richard Tyser.

Professor Sir Rory Collins awarded the MRC Millennium Medal 2020

CRE Research

Professor Sir Rory Collins, Head of the Nuffield Department of Population Health, and Principal Investigator and Chief Executive of UK Biobank, has been awarded the Medical Research Council (MRC) Millennium Medal 2020, the MRC’s most prestigious personal award.

New MRI technique could detect early signs of heart failure in cancer patients following chemotherapy

CRE Publication Research

New research led by Oxford BHF CRE Intermediate Transition Fellow Dr Kerstin Timm shows that a recently developed imaging technique pioneered by the Tyler Group can detect early metabolic changes in the heart caused by a commonly used chemotherapy drug, which is known to increase risk of heart failure in cancer survivors.