Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Dr Damien Barnette, a Postdoctoral Research Scientist, has recently published new data in the journal JCI Insight, iRhom2-mediated proinflammatory signalling regulates heart repair following myocardial infarction.

When the heart undergoes injury, such as following a heart attackan immediate response is the infiltration of immune cells of which one important sub-type are macrophages. These are thought to come in two distinct “flavours”- early “proinflammmatory” (or M1), which mop up dead and dying cells, followed by “reparative” (M2) macrophages, which help remodel the heart and contribute to patching the area of injury with a scar.

By looking at the injured hearts in mice that lack secretion of a key inflammatory molecule called TNF-alpha from their macrophages, Dr Barnette and colleagues revealed an unexpected link between the two immune cell phases in response to injury.

The dampening of pro-inflammatory signalling had a direct, knock-on effect on scar formation, whereby the mutant mice had less stable scars, poor heart function and reduced survival.

This suggests that there is a gradient of immune cell responses which is not restricted to the two “flavours”, and that downstream repair of a heart attack by scar formation is inextricably linked to the early pro-inflammatory immune cell response. This has important implications for designing strategies to modulate inflammation and repair as a combined therapy with restoring lost cardiovascular tissue after heart attack.

This work was done in collaboration with Professor Paul RileyDr Thomas CahillMs Mala Gunadasa-RohlingProfessor Carolyn CarrProfessor Matthew Freeman (Dunn School) and was supported by the British Heart Foundation

To find out more about the research that goes similar to this, visit the Riley Research Group webpage.

Similar stories

Study develops radiotranscriptomic AI analysis to enable virtual heart biopsies

RDM researchers tested the method in COVID-19 patients, to find that the results predicted in-hospital mortality.

BHF Senior Fellowship renewal for Duncan Sparrow could pave the way to revealing unknown causes of heart defects in babies

Congratulations are in order for Associate Professor Duncan Sparrow, who has been awarded a renewal of his British Heart Foundation Senior Basic Science Research Fellowship. The award will fund crucial investigations into little understood environmental risk factors of congenital heart disease, and could one day lead to new therapeutic strategies.

Joaquim Vieira brings heart regeneration research to the public at Pint of Science

Pint of Science is the world’s largest public science festival bringing researchers to local pubs, cafes and spaces to share their scientific discoveries with the public.

DPAG researchers showcased at premier European Society of Cardiology meeting

DPAG scientists across four research groups were highlighted at the major annual European Society of Cardiology basic science conference (FCVB 2022). Congratulations are in order for Dr KC Park on receiving the Young Investigator Award and to Dr Elisabetta Gamen on winning the Moderated Poster Prize.

The effect of nuclear pH on cardiac gene expression

Research led by Dr Alzbeta Hulikova and Professor Pawel Swietach has, for the first time, described the potential regulation of nuclear acid-base chemistry in neonatal and adult cardiomyocytes, and explained its relevance in the context of heart physiology and pathology.

RDM researchers awarded £2million MRC grant

Researchers at the Cardiovascular Clinical Research Facility (CCRF) have won a five year MRC funding programme to help understand how high blood pressure (hypertension) during pregnancy affects the heart, brain and blood vessels throughout the life of women, as well as the children born after such a pregnancy.