Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Proteins need to be tough: many respond to mechanical forces, which means that they bounce back from repeated cycles of forces which physically alter their structure, stretching or squishing them out of shape. Now a new paper led by Drs Justin Benesch and Katja Gehmlich has identified interactions which might stop a protein found in the heart from literally overextending itself.

“The heart is an organ which undergoes quite a lot of mechanical stress,” said Dr Gehmlich from the Radcliffe Department of Medicine. “In order to physically pump blood around the body, the heart changes its size and shape a lot during each heart beat, which means that proteins that make up heart muscles probably experience the largest mechanical forces in the body.

This means that proteins in the heart need to detect and respond to physical forces, but still retain their structural integrity.”

Filamin C

The team of Oxford University researchers and their European collaborators focussed on a protein known as filamin C, which is a key protein in many signalling pathways. By cross-linking with the protein actin to create complex three-dimensional networks, filamin C also helps cells move by participating in formation of the cellular ‘skeleton’. Equally important, filamin C is also a key part of the contractile apparatus in muscles.

People with mutations in the gene that makes filamin C can have serious malfunctions, either in the heart or in skeletal muscle. Filamin C’s function in muscle suggests that it would need to detect and respond to physical forces.

The research team used techniques spanning the range from looking at interactions at the atomic to tissue level, to track how filamin C might be responding to stress, and how its interaction with a ‘chaperone’ protein called HspB1 might protect it from being over-stretched and damaged.

The study’s first author, Miranda Collier from the Department of Chemistry at Oxford University said: “We applied various structural biology techniques to analyse both proteins separately and together, to understand how they interact with each other“.

Dr Justin Benesch, also from the Department of Chemistry, adds: “Our gas phase collision experiments can mimic the way filamin C is pulled to its full extent by an external force and help us understand how this process is changed by the presence of HspB1.”

The team thinks that this interaction between HspB1 and filamin C might be protecting filamin C from damage. Combined with previous work, they suggest that there might be a tiered set of mechanisms that protect this crucial heart muscle protein, each active at a different tension – the HspB1 mechanism appears to kick in at high mechanical stress, when filamin C is at risk of being stretched so much that it may not function properly.

The team now plans to explore the potentially protective activities of HspB1 for the heart further in model systems for heart failure, a common disease associated with high mortality and high costs for health care systems.

Read the full paper at Science Advances.

Similar stories

The effect of nuclear pH on cardiac gene expression

Research led by Dr Alzbeta Hulikova and Professor Pawel Swietach has, for the first time, described the potential regulation of nuclear acid-base chemistry in neonatal and adult cardiomyocytes, and explained its relevance in the context of heart physiology and pathology.

Study indicates reasons for decline in death rates from heart attacks

A new study involving Oxford Population Health researchers finds that both prevention and improved treatments have helped reduce deaths from heart attacks - but the relative importance of each varies by country, age and sex.

Review highlights impact of Long COVID on cardiovascular system

The wide-ranging effects of Long COVID and the associated issues for healthcare providers have been revealed in a new review of the major studies into the condition, which specifically highlights the impact of Long COVID on the cardiovascular system.

Commercial development of therapeutic anti-inflammatory peptide begins

An Oxford BHF CRE “Pump Priming” award to Professor Shoumo Bhattacharya and his research group led to a great return on investment with this exclusive licensing agreement for their innovative research.

London Marathon to fund De Val and Vieira Lab research as two of eight handpicked BHF projects

Two projects aimed at tackling heart failure led by Associate Professor Sarah De Val and Dr Joaquim Vieira are to be funded by the 2022 TCS London Marathon with the British Heart Foundation as its Charity of the Year. The BHF’s runners, who are raising £3 million in funding, will include De Val Lab postdoctoral researcher Dr Alice Neal.

Dr Qiang Zhang wins Society for Cardiovascular Magnetic Resonance Early Career Award 2022

Many congratulations to Dr Qiang Zhang, Oxford BHF CRE Transition Fellow, who has won a prestigious award for his work in developing a groundbreaking technology for detecting scar in the myocardium