Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

A large-scale genetic study, led by Oxford BHF researchers Dr Parag Gajendragadkar, clinical DPhil student, Professor Barbara Casadei and Professor Jemma Hopewell, has shed new light on common heart rhythm disturbances

A large-scale genetic study has shed new light on common heart rhythm disturbances. The study, published today in PLOS Medicine, provides evidence supporting a causal association between electrocardiogram features and irregular heart rhythms, and helps to distinguish the causes and consequences of atrial fibrillation.  

Atrial fibrillation, an irregular and often abnormally fast heart rhythm, affects approximately 1 million people in the UK and is associated with an increased risk of stroke, dementia, heart failure and death. Treatment options for atrial fibrillation are limited and show poor long-term success.

Therapeutic developments are reliant on understanding the underlying causes of disease. To elucidate the biological mechanisms for atrial fibrillation and other supraventricular tachycardias (conditions that result in the heart beating faster than normal) University of Oxford researchers used a genetic approach known as Mendelian randomisation. This allowed the use of genetic information to assess whether lifelong differences in features of patients’ electrocardiogram readings are likely to be causal risk factors in the development of these abnormal heart rhythms.

The research was based on almost 300,000 participants in the UK Biobank study, including 19,000 cases of atrial fibrillation. In particular, genetic variants predicting a longer PR interval (the time it takes for the heart pacemaker impulse to go through the top chambers of the heart and reach the ventricles) were associated with lower risk of atrial fibrillation. These effects were not driven by major risk factors for atrial fibrillation, including heart failure, high blood pressure or diabetes, or left atrial size. The results also showed that a longer genetically-predicted PR interval was associated with lower risk of supraventricular tachycardia.

Dr Parag Gajendragadkar, British Heart Foundation Clinical Training Fellow in the Radcliffe Department of Medicine and first author, said ‘It was surprising to see strong associations between electrocardiogram parameters and risks of supraventricular tachycardia as well as atrial fibrillation. This suggests that these arrhythmias may share some common causal features with atrial fibrillation. Additionally, it suggests that atrial fibrillation itself may arise from a variety of different electrical mechanisms in different people.’

Dr Barbara Casadei, British Heart Foundation Professor of Cardiovascular Medicine, in the Radcliffe Department of Medicine and a senior author says: ‘Although we have associated atrial fibrillation with a number of electrical and structural abnormalities of the heart, we can seldom discriminate between those that cause the arrhythmia and those that result from it or are a consequence of coexisting heart conditions. The use of genetic tools helps us identify which comes first and by doing so informs both the search for new treatments and the timing of their administration in individual patients.’

Dr Jemma Hopewell, Professor of Precision Medicine and Epidemiology in the Nuffield Department of Population Health, British Heart Foundation Research Fellow, and senior author of the report says: ‘Our large-scale genetic epidemiological study helps to complete an important piece of the puzzle by supporting a causal relationship between longer atrial conduction times and lower risk of atrial fibrillation, an association that does not appear to be driven by well-known mechanisms such as major cardiovascular co-morbidities. Such insights are central to the development of new therapeutic approaches as well as precision medicine initiatives that can directly impact the lives of patients with atrial fibrillation.’

Similar stories

The effect of nuclear pH on cardiac gene expression

Research led by Dr Alzbeta Hulikova and Professor Pawel Swietach has, for the first time, described the potential regulation of nuclear acid-base chemistry in neonatal and adult cardiomyocytes, and explained its relevance in the context of heart physiology and pathology.

Study indicates reasons for decline in death rates from heart attacks

A new study involving Oxford Population Health researchers finds that both prevention and improved treatments have helped reduce deaths from heart attacks - but the relative importance of each varies by country, age and sex.

Review highlights impact of Long COVID on cardiovascular system

The wide-ranging effects of Long COVID and the associated issues for healthcare providers have been revealed in a new review of the major studies into the condition, which specifically highlights the impact of Long COVID on the cardiovascular system.

Commercial development of therapeutic anti-inflammatory peptide begins

An Oxford BHF CRE “Pump Priming” award to Professor Shoumo Bhattacharya and his research group led to a great return on investment with this exclusive licensing agreement for their innovative research.

London Marathon to fund De Val and Vieira Lab research as two of eight handpicked BHF projects

Two projects aimed at tackling heart failure led by Associate Professor Sarah De Val and Dr Joaquim Vieira are to be funded by the 2022 TCS London Marathon with the British Heart Foundation as its Charity of the Year. The BHF’s runners, who are raising £3 million in funding, will include De Val Lab postdoctoral researcher Dr Alice Neal.

Dr Qiang Zhang wins Society for Cardiovascular Magnetic Resonance Early Career Award 2022

Many congratulations to Dr Qiang Zhang, Oxford BHF CRE Transition Fellow, who has won a prestigious award for his work in developing a groundbreaking technology for detecting scar in the myocardium