Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

RATIONALE: Idiopathic dilated cardiomyopathy (DCM) is inherited in approximately one third of cases, usually as an autosomal dominant trait. More than 30 loci have been identified, several of which encode sarcomeric proteins which can also be mutated to cause hypertrophic cardiomyopathy. One contractile protein gene well known as a hypertrophic cardiomyopathy disease gene, but with no reported mutation in autosomal dominant DCM, is TNNI3 which encodes cardiac troponin I. OBJECTIVE: To test TNNI3 as a candidate gene, a panel of 96 probands with DCM was analyzed. METHODS AND RESULTS: Genomic DNA was isolated and TNNI3 exons screened by heteroduplex analysis. Exons with aberrant profiles were sequenced and variants evaluated by segregation analysis and study of normal controls. We report 2 novel TNNI3 missense mutations, Lys36Gln and Asn185Lys, each associated with severe and early onset familial DCM. Of the 5 mutation carriers, cardiac transplantation was required in 3, at ages 6, 15, and 24 years. Analysis of Ca(2+) regulation of actin-tropomyosin-activated myosin ATPase by troponin revealed that troponin reconstituted with either mutant troponin I gave lower maximum ATPase rates and lower Ca(2+) sensitivity than wild type. Furthermore, mutant thin filaments had reduced Ca(2+) affinity compared with normal. CONCLUSIONS: The functional alterations mirror closely a consistent phenotype found in proven DCM mutations in other thin filament proteins, thus supporting the interpretation that these mutations are disease-causing. These are the first reported autosomal dominant DCM-causing mutations in TNNI3, and so the findings expand the spectrum of disease-causing genes that lead to either hypertrophic cardiomyopathy or DCM depending on the specific mutation.

Original publication




Journal article


Circ Res

Publication Date





375 - 382


Adolescent, Adult, Amino Acid Substitution, Cardiomyopathy, Dilated, Child, DNA Mutational Analysis, Female, Genes, Dominant, Genetic Diseases, Inborn, Humans, Male, Middle Aged, Mutation, Missense, Pedigree, Quantitative Trait Loci, Troponin I