Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

(6R)-5,6,7,8-Tetrahydro-biopterin (H(4)B) is essential for the catalytic activity of all NO synthases. The hyperphenylalaninemic mouse mutant (hph-1) displays 90% deficiency of the GTP cyclohydrolase I, the rate-limiting enzyme in H(4)B synthesis. A relative shortage of H(4)B may shift the balance between endothelial NO synthase (eNOS)-catalyzed generation of NO and reactive oxygen species. Therefore, the hph-1 mouse represents a unique model to assess the effect of chronic H(4)B deficiency on endothelial function. Aortas from 8-week-old hph-1 and wild-type mice (C57BLxCBA) were compared. H(4)B levels were determined by high-performance liquid chromatography and NO synthase activity by [(3)H]citrulline assay in homogenized tissue. Superoxide production by the chemiluminescence method was measured. Isometric tension was continuously recorded. The intracellular levels of H(4)B as well as constitutive NO synthase activity were significantly lower in hph-1 compared with wild-type mice. Systolic blood pressure was increased in hph-1 mice. However, endothelium-dependent relaxations to acetylcholine were present in both groups and abolished by inhibition of NO synthase with N(G)-nitro-L-arginine methyl ester as well. Only in hph-1 mice were the relaxations inhibited by catalase and enhanced by superoxide dismutase. After incubation with exogenous H(4)B, the differences between the 2 groups disappeared. Our findings demonstrate that H(4)B deficiency leads to eNOS dysfunction with the formation of reactive oxygen species, which become mediators of endothelium-dependent relaxations. A decreased availability of H(4)B may favor an impaired activity of eNOS and thus contribute to the development of vascular diseases.

Type

Journal article

Journal

Arterioscler Thromb Vasc Biol

Publication Date

04/2001

Volume

21

Pages

496 - 502

Keywords

Acetylcholine, Animals, Aorta, Biopterin, Blood Pressure, Catalase, Chromatography, High Pressure Liquid, Disease Models, Animal, Endothelium, Vascular, Male, Mice, Mice, Inbred Strains, Mice, Mutant Strains, Muscle, Smooth, Vascular, Nitric Oxide Synthase, Nitroprusside, Norepinephrine, Reactive Oxygen Species, Superoxide Dismutase, Vasodilation