Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Superoxide anion plays important roles in vascular disease states. Increased superoxide production contributes to reduced nitric oxide (NO) bioactivity and endothelial dysfunction in experimental models of vascular disease. We measured superoxide production by NAD(P)H oxidase in human blood vessels and examined the relationships between NAD(P)H oxidase activity, NO-mediated endothelial function, and clinical risk factors for atherosclerosis. Endothelium-dependent vasorelaxations and direct measurements of vascular superoxide production were determined in human saphenous veins obtained from 133 patients with coronary artery disease and identified risk factors. The predominant source of vascular superoxide production was an NAD(P)H-dependent oxidase. Increased vascular NAD(P)H oxidase activity was associated with reduced NO-mediated vasorelaxation. Furthermore, reduced endothelial vasorelaxations and increased vascular NAD(P)H oxidase activity were both associated with increased clinical risk factors for atherosclerosis. Diabetes and hypercholesterolemia were independently associated with increased NADH-dependent superoxide production. The association of increased vascular NAD(P)H oxidase activity with endothelial dysfunction and with clinical risk factors suggests an important role for NAD(P)H oxidase-mediated superoxide production in human atherosclerosis. The full text of this article is available at


Journal article


Circ Res

Publication Date





E85 - E90


Acetylcholine, Aged, Analysis of Variance, Arteriosclerosis, Calcimycin, Endothelium, Vascular, Female, Humans, Ionophores, Male, Middle Aged, NADH, NADPH Oxidoreductases, NADPH Oxidases, Nitroprusside, Risk Factors, Saphenous Vein, Superoxides, Vasodilator Agents, Vasomotor System