Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Murine MRI studies are conducted on dedicated MR systems, typically equipped with ultra-high-field magnets (>or=4.7 T; bore size: approximately 12-25 cm), using a single transmit-receive coil (volume or surface coil in linear or quadrature mode) or a transmit-receive coil combination. Here, we report on the design and characterization of an eight-channel volume receive-coil array for murine MRI at 400 MHz. The array was combined with a volume-transmit coil and integrated into one probe head. Therefore, the animal handling is fully decoupled from the radiofrequency setup. Furthermore, fixed tune and match of the coils and a reduced number of connectors minimized the setup time. Optimized preamplifier design was essential for minimizing the noise coupling between the elements. A comprehensive characterization of transmit volume resonator and receive coil array is provided. The performance of the coil array is compared to a quadrature-driven birdcage coil with identical sensitive volume. It is shown that the miniature size of the elements resulted in coil noise domination and therefore reduced signal-to-noise-ratio performance in the center compared to the quadrature birdcage. However, it allowed for 3-fold accelerated imaging of mice in vivo, reducing scan time requirements and thus increasing the number of mice that can be scanned per unit of time.

Original publication




Journal article


Magn Reson Med

Publication Date





80 - 87


Animals, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Mice, Phantoms, Imaging