Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

22q11 deletion syndrome (22q11DS) is characterised by aberrant development of the pharyngeal apparatus and the heart with haploinsufficiency of the transcription factor TBX1 being considered the major underlying cause of the disease. Tbx1 mutations in mouse phenocopy the disorder. In order to identify the transcriptional dysregulation in Tbx1-expressing lineages we optimised fluorescent-activated cell sorting of beta-galactosidase expressing cells (FACS-Gal) to compare the expression profile of Df1/Tbx1(lacZ) (effectively Tbx1 null) and Tbx1 heterozygous cells isolated from mouse embryos. Hes1, a major effector of Notch signalling, was identified as downregulated in Tbx1(-)(/)(-) mutants. Hes1 mutant mice exhibited a partially penetrant range of 22q11DS-like defects including pharyngeal arch artery (PAA), outflow tract, craniofacial and thymic abnormalities. Similar to Tbx1 mice, conditional mutagenesis revealed that Hes1 expression in embryonic pharyngeal ectoderm contributes to thymus and pharyngeal arch artery development. These results suggest that Hes1 acts downstream of Tbx1 in the morphogenesis of pharyngeal-derived structures.

Original publication




Journal article


Dev Biol

Publication Date





369 - 380


Animals, Basic Helix-Loop-Helix Transcription Factors, Branchial Region, Chromosomes, Embryo, Mammalian, Heart, Homeodomain Proteins, In Situ Hybridization, Mice, Mice, Knockout, Sequence Deletion, Syndrome, T-Box Domain Proteins, Thymus Gland, Transcription Factor HES-1, beta-Galactosidase