Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Cyclic ADP-ribose mobilizes intracellular Ca2+ in a variety of cells. To elucidate the nature of the interaction between the C3' substituent of cADP-ribose and the cADPR receptor, three analogues of NAD+ modified in the adenosine ribase (xyloNAD+ 3'F-xyloNAD+ and 3'F-NAD+ were chemically synthesised from D-xylose and adenine starting materials. 3'F-NAD+ was readily converted to cyclic 3'F-ADP ribose by the action of the cyclase enzyme derived from the mollusc Aplysia californica. XyloNAD+ and 3'F-xyloNAD+ were cyclised only reluctantly and in poor yield to afford unstable cyclic products. Biological evaluation of cyclic 3'F-ADP ribose for calcium release in sea urchin egg homogenate gave an EC(50) of 1.5+/-0.5 microM. This high value suggests that the ability of the C3' substituent to donate a hydrogen bond is crucial for agonism.

Original publication

DOI

10.1016/j.bmc.2003.10.012

Type

Journal article

Journal

Bioorg Med Chem

Publication Date

15/01/2004

Volume

12

Pages

475 - 487

Keywords

ADP-ribosyl Cyclase, Animals, Aplysia, Biochemistry, Calcium, Cyclic ADP-Ribose, Cyclization, Hydrogen Bonding, Kinetics, NAD, Ovum, Sea Urchins