Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The development of the patch clamp technique has revolutionised our understanding of the life sciences. One area in which it has made an enormous contribution is cellular signalling. In many cell types, calcium influx across the plasma membrane is essential for the regulation of a wide range of critical physiological responses including secretion, gene transcription and cell growth. For many years the calcium influx pathways in non-excitable cells remained unknown, despite their importance in physiological and pathophysiological states. Very careful and insightful work by James Putney led to the formulation of the capacitative calcium entry (store-operated calcium influx) model, in which the process of emptying intracellular calcium stores resulted in the activation of calcium entry channels. Unequivocal evidence for this revolutionary model was provided by patch clamp studies carried out by Markus Hoth and Reinhold Penner, who demonstrated that store depletion activated a novel class of calcium channel called the CRAC channel. This review provides a historical perspective on the development of store-operated calcium influx and how patch clamping resolved a long-standing controversy in cell physiology. The review also discusses current ideas relating to how store emptying opens channels in the plasma membrane.

Original publication




Journal article


Pflugers Arch

Publication Date





303 - 311


Animals, Calcium, Calcium Channels, Calcium Signaling, Cell Adhesion Molecules, Cell Membrane, Exocytosis, Humans, Membrane Proteins, Neoplasm Proteins, Patch-Clamp Techniques, Stromal Interaction Molecule 1, Stromal Interaction Molecule 2