Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The potential of primary cultures of rabbit renal artery vascular smooth muscle cells (VSMCs) was assessed as a means to investigate the signalling pathways linked to 5-hydroxytryptamine (5-HT) 5-HT(1B)/5-HT(1D) receptors in native arteries. In renal artery segments denuded of endothelium, incubated with ketanserin and prazosin (each 1 microM), and prestimulated with 20 mM K(+) Krebs buffer, 5-HT and CP 93,129, a 5-HT(1B) receptor agonist, evoked concentration-dependent contractions. GR 127935, a 5-HT(1B)/5-HT(1D) receptor antagonist, significantly antagonised 5-HT-evoked contractions at nanomolar concentrations. Reverse transcription polymerase chain reaction (RT-PCR) of mRNA from smooth muscle cells from the isolated renal artery and from primary cultures of VSMCs from the same artery expressed mRNA transcripts for the 5-HT(1B) receptor and the 5-HT(1D) receptor in both preparations. The sequence of the PCR fragments corresponded to the known sequence for these receptors. Application of 5-HT evoked a concentration-dependent, pertussis toxin (PTx)-sensitive reduction in cyclic AMP in both cultured cells and intact artery (cyclic AMP concentration reduced by 65.53 +/- 3.33 and 52.65 +/- 5.34% from basal with 10 microM 5-HT, respectively). The effect of 10 microM 5-HT on cAMP was increased in the presence of 20 mM K(+) (reduced by 82.50 +/- 2.50 and 87.54 +/- 3.97%, respectively). In intact arteries, contraction through 5-HT(1B)/5-HT(1D) receptors was significantly attenuated by inhibitors of phosphatidylinositol 3-kinase (wortmannin) and activated mitogen-activated protein kinase (MAPK), MEK (U0126). In the cultured VSMCs, activated MAPK was identified by immunocytochemistry and immunoblotting after stimulation with 5-HT, but only if 20 mM K(+) was present at the onset of stimulation. These data provide the first direct evidence that 5-HT(1B)/5-HT(1B) receptors are linked to the activation of MAPK and indicate that primary cultures of renal VSMCs could provide a model system to study further the signalling pathways linked to these receptors.

Original publication

DOI

10.1159/000054078

Type

Journal article

Journal

J Vasc Res

Publication Date

11/2000

Volume

37

Pages

457 - 468

Keywords

Androstadienes, Animals, Butadienes, Cells, Cultured, Cyclic AMP, Dose-Response Relationship, Drug, Enzyme Inhibitors, Female, Ketanserin, MAP Kinase Signaling System, Mitogen-Activated Protein Kinase Kinases, Mitogen-Activated Protein Kinases, Muscle, Smooth, Vascular, Nitriles, Oxadiazoles, Pertussis Toxin, Phosphatidylinositol 3-Kinases, Piperazines, Prazosin, Rabbits, Receptor, Serotonin, 5-HT1B, Receptor, Serotonin, 5-HT1D, Receptors, Serotonin, Renal Artery, Reverse Transcriptase Polymerase Chain Reaction, Serotonin, Serotonin Antagonists, Serotonin Receptor Agonists, Signal Transduction, Vasoconstriction, Virulence Factors, Bordetella, Wortmannin