Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In rat mesenteric arteries, the ability of ACh to evoke hyperpolarization of smooth muscle cells and consummate dilatation relies on an increase in endothelial cell cytosolic free [Ca2+] and activation of Ca2+-activated K+ channels (KCa). The time course of average and spatially organized rises in endothelial cell [Ca2+]i and concomitant effects on membrane potential were investigated in individual cells of pressurized arteries and isolated sheets of native cells stimulated with ACh. In both cases, ACh stimulated a sustained and oscillating rise in endothelial cell [Ca2+]i. Overall, the oscillations remained asynchronous between cells, yet occasionally localized intercellular coordination became evident. In pressurized arteries, repetitive waves of Ca2+ moved longitudinally across endothelial cells, and depended on Ca2+-store refilling. The rise in endothelial cell Ca2+ was associated with sustained hyperpolarization of endothelial cells in both preparations. This hyperpolarization was also evident when recording from smooth muscle cells in pressurized arteries, and from resting membrane potential, selective inhibition of small-conductance K Ca (SK Ca) with apamin (50 nM) was sufficient to inhibit this response. In the presence of phenylephrine-tone, both apamin and the selective inhibitor of intermediate conductance K Ca (IK Ca) TRAM-34 (1 microM) were required to inhibit the non-nitric oxide-mediated dilatation to ACh. When hyperpolarization of endothelial cells was fully prevented either with inhibitors of K Ca or in KCl (35 mM)-depolarized cells, both the time course and frequency of oscillations in endothelial cell [Ca2+]i to ACh were unaffected. Together, these data show that although a rise in endothelial cell [Ca2+]i stimulates hyperpolarization, depletion of intracellular stores with ACh stimulates Ca2+-influx which is not significantly influenced by the increase in cellular electrochemical gradient for Ca2+ caused by that hyperpolarization.

Original publication




Journal article


Cell Calcium

Publication Date





23 - 33


Acetylcholine, Animals, Calcium, Endothelium, Vascular, Fluorescent Dyes, Male, Membrane Potentials, Mesenteric Arteries, Rats, Rats, Wistar, Vasodilator Agents