DNA methylation is associated with lung function in never smokers
De Vries M., Nedeljkovic I., Van Der Plaat DA., Zhernakova A., Lahousse L., Brusselle GG., Amin N., Van Duijn CM., Vonk JM., Boezen HM.
© 2019 The Author(s). Background: Active smoking is the main risk factor for COPD. Here, epigenetic mechanisms may play a role, since cigarette smoking is associated with differential DNA methylation in whole blood. So far, it is unclear whether epigenetics also play a role in subjects with COPD who never smoked. Therefore, we aimed to identify differential DNA methylation associated with lung function in never smokers. Methods: We determined epigenome-wide DNA methylation levels of 396,243 CpG-sites (Illumina 450 K) in blood of never smokers in four independent cohorts, LifeLines COPD&C (N = 903), LifeLines DEEP (N = 166), Rotterdam Study (RS)-III (N = 150) and RS-BIOS (N = 206). We meta-Analyzed the cohort-specific methylation results to identify differentially methylated CpG-sites with FEV1/FVC. Expression Quantitative Trait Methylation (eQTM) analysis was performed in the Biobank-based Integrative Omics Studies (BIOS). Results: A total of 36 CpG-sites were associated with FEV1/FVC in never smokers at p-value< 0.0001, but the meta-Analysis did not reveal any epigenome-wide significant CpG-sites. Of interest, 35 of these 36 CpG-sites have not been associated with lung function before in studies including subjects irrespective of smoking history. Among the top hits were cg10012512, cg02885771, annotated to the gene LTV1 Ribosome Biogenesis factor (LTV1), and cg25105536, annotated to Kelch Like Family Member 32 (KLHL32). Moreover, a total of 11 eQTMS were identified. Conclusions: With the identification of 35 CpG-sites that are unique for never smokers, our study shows that DNA methylation is also associated with FEV1/FVC in subjects that never smoked and therefore not merely related to smoking.