Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Membrane proteins engage in a variety of contacts with theirsurrounding lipids, but distinguishing between specifically boundlipids, and non-specific annular interactionsis a challenging problem. Applying native mass spectrometry to three membrane protein complexes with different lipid binding properties, we explore the ability of detergents to compete with lipids bound in different environments. We show that lipids in annular positions on the Presenilin Homologue protease are subject to constant exchange with detergent. Bycontrast,detergent-resistantlipids bound at the dimer interface in the Leucine transportershowdecreased koffrates in molecular dynamics simulations.Turning tothe lipid flippase MurJ, we findthat addition of the natural substrate lipid-II results in the formation of a 1:1 protein-lipid complex, where the lipid cannot be displaced by detergentfromthe highly protected active site.In summary, we distinguish annular from non-annular lipids based on their exchange rates in solution.

Original publication

DOI

10.1002/anie.201914411

Type

Journal article

Journal

Angew Chem Int Ed Engl

Publication Date

30/12/2019

Keywords

lipid binding, membrane protein structure, molecular dynamics, native mass spectrometry