Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The oxygen-transport function of hemoglobin (HB) is thought to have arisen ~500 million years ago, roughly coinciding with the divergence between jawless (Agnatha) and jawed (Gnathostomata) vertebrates. Intriguingly, extant HBs of jawless and jawed vertebrates were shown to have evolved twice, and independently, from different ancestral globin proteins. This raises the question whether erythroid-specific expression of HB also evolved twice independently. In all jawed vertebrates studied to date, one of the Hb gene clusters is linked to the widely expressed Nprl3 gene. Here we show that the nprl3-linked hb locus of a jawless vertebrate, the river lamprey (Lampetra fluviatilis), shares a range of structural and functional properties with the equivalent jawed vertebrate Hb locus. Functional analysis demonstrates that an erythroid-specific enhancer is located in intron 7 of lamprey nprl3, which corresponds to the NPRL3 intron 7 MCS-R1 enhancer of jawed vertebrates. Collectively, our findings signify the presence of an nprl3-linked multi-globin gene locus, which contained a remote enhancer driving globin expression in erythroid cells, prior to the divergence of jawless and jawed vertebrates. Different globin genes from this ancestral cluster evolved in the current nprl3-linked hb genes in jawless and jawed vertebrates. This provides a solution for the enigma of how, in different species, globin genes linked to the same adjacent gene could undergo convergent evolution.

Original publication

DOI

10.1182/blood.2020004826

Type

Journal article

Journal

Blood

Publication Date

12/05/2020