Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Membrane proteins are important macromolecules that play crucial roles in many cellular and physiological processes. Over the past two decades, the use of mass spectrometry as a biophysical tool to characterise membrane proteins has grown steadily. By capturing these dynamic complexes in the gas phase, many unknown small molecule interactions have been revealed. One particular application of this research has been the focus on antibiotic resistance with considerable efforts being made to understand underlying mechanisms. Here we review recent advances in the application of mass spectrometry that have yielded both structural and dynamic information on the interactions of antibiotics with proteins involved in bacterial cell envelope biogenesis and drug efflux.

Original publication




Journal article


Curr Opin Struct Biol

Publication Date





53 - 60