Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

INTRODUCTION There is increasing interest in plasma Aβ as an endophenotype and biomarker of Alzheimer’s disease (AD). Identifying the genetic determinants of plasma Aβ levels may elucidate important processes that determine plasma Aβ measures. METHODS We included 12,369 non-demented participants derived from eight population-based studies. Imputed genetic data and plasma Aβ1-40, Aβ1-42 levels and Aβ1-42/Aβ1-40 ratio were used to perform genome-wide association studies, gene-based and pathway analyses. Significant variants and genes were followed-up for the association with PET Aβ deposition and AD risk. RESULTS Single-variant analysis identified associations across APOE for Aβ1-42 and Aβ1-42/Aβ1-40 ratio, and BACE1 for Aβ1-40. Gene-based analysis of Aβ1-40 additionally identified associations for APP , PSEN2 , CCK and ZNF397 . There was suggestive interaction between a BACE1 variant and APOE ε4 on brain Aβ deposition. DISCUSSION Identification of variants near/in known major Aβ-processing genes strengthens the relevance of plasma-Aβ levels both as an endophenotype and a biomarker of AD.

Original publication




Journal article

Publication Date



Alzheimer’s Disease Neuroimaging Initiative