Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

This study provides data for the effect of dietary non-essential amino acid composition on the delta(13)C values of individual amino acids in rainbow trout (Oncorhynchus mykiss) using liquid chromatography coupled to isotope ratio mass spectrometry (LC/IRMS). In this experiment, trout were reared either on a control diet or on three experimental diets, differing in the composition of non-essential/conditionally essential amino acids, for a period of 6 weeks. The control diet was a commercial trout starter feed with fish meal as the main protein source. The experimental diets contained no protein, only synthetic amino acids. Diet 1 resembled the composition of fish meal in both essential and non-essential amino acids, Diet 2 had all essential amino acids, but cysteine, glycine, proline and tyrosine were replaced by the corresponding amounts of their precursors, and in Diet 3 all non-essential amino acids were replaced by glutamate. LC/IRMS was used for the determination of delta(13)C values of individual amino acids from diets and tissues without derivatization. Diet affected the delta(13)C of individual amino acids in fish. For fish on Diets 1-3 amino acid delta(13)C values showed a similar trend: phenylalanine showed very little change from diet to body tissue. Arginine, lysine, tyrosine and proline showed strong depletion from diet to body tissue and glycine, alanine, aspartate and serine all showed variable but strong enrichment in (13)C. Improvements are necessary before all amino acid delta(13)C values can be determined; however, this study demonstrates that measuring amino acid isotopic signatures by LC/IRMS is a promising new technique for nutritional physiologists.

Original publication




Journal article


Rapid Commun Mass Spectrom

Publication Date





1817 - 1822


Amino Acids, Animal Nutritional Physiological Phenomena, Animals, Carbon Isotopes, Chromatography, Liquid, Dietary Proteins, Mass Spectrometry, Time Factors