Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The establishment of distinct cellular identities was pivotal during the evolution of Metazoa, enabling the emergence of an array of specialized tissues with different functions. In most animals including vertebrates, cell specialization occurs in response to a combination of intrinsic (e.g., cellular ontogeny) and extrinsic (e.g., local environment) factors that drive the acquisition of unique characteristics at the single-cell level. The first functional organ system to form in vertebrates is the cardiovascular system, which is lined by a network of endothelial cells whose organ-specific characteristics have long been recognized. Recent genetic analyses at the single-cell level have revealed that heterogeneity exists not only at the organ level but also between neighboring endothelial cells. Thus, how endothelial heterogeneity is established has become a key question in vascular biology. Drawing upon evidence from multiple organ systems, here we will discuss the role that lineage history may play in establishing endothelial heterogeneity.

Original publication

DOI

10.1002/bies.202100036

Type

Journal article

Journal

Bioessays

Publication Date

07/2021

Volume

43

Keywords

coronary endothelial cell, heterogeneity, lineage tracing, lymphatic, ontogeny, single cell